Chapter 02 (ATOMIC STRUCTURE)

SECTION - A

Time allowed: 20 minutes	Marks: 17
Time anonear 20 minutes	11141110111

Note: Section-A is compulsory. All parts of this section are to be answered on the question paper itself. It should be completed in the first 20 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q.1 Encircle the correct option i.e. A / B / C / D. All parts carry equal marks.

- (i) Which of the following is not true for cathode rays?:
- (a) cathode rays or negatively charged
- (b) they can produce X rays when they strike on an anode
- (c) They cast a shadow when an opaque medium is placed in their path
- (d) there e/m value depends upon the nature of gas in discharge tube
- (ii) When fast neutrons are bombarded on nitrogen atoms what radiations are emitted?

(a) Beta rays

(b) gamma Rays

(c) x-rays

(d) alpha rays

(iii) The radius of 1st orbit of Li+2ion is:

(a) 0.176 A°

(b) 0.2645 A°

(c) 0.529 A°

(d) 2.116A°

(iv) The wavelength of green light is 500 nm. Its frequency is equals to:

(a) $6 \times 10^{14} \, \text{Hz}$

(b) 6Hz

(c) 1.5 Hz

(d) $1.5 \times 10^{14} \, \text{Hz}$

(v) The maximum number of electrons in a subshell for which l = 3 is?

(a) 14

(b) 10

(c) 8

(d) 4

(vi) Which set of quantum numbers is not valid for an electron?

(a) n= 3, l=2, m=-2

(b) **n= 1, l=1, m=0**

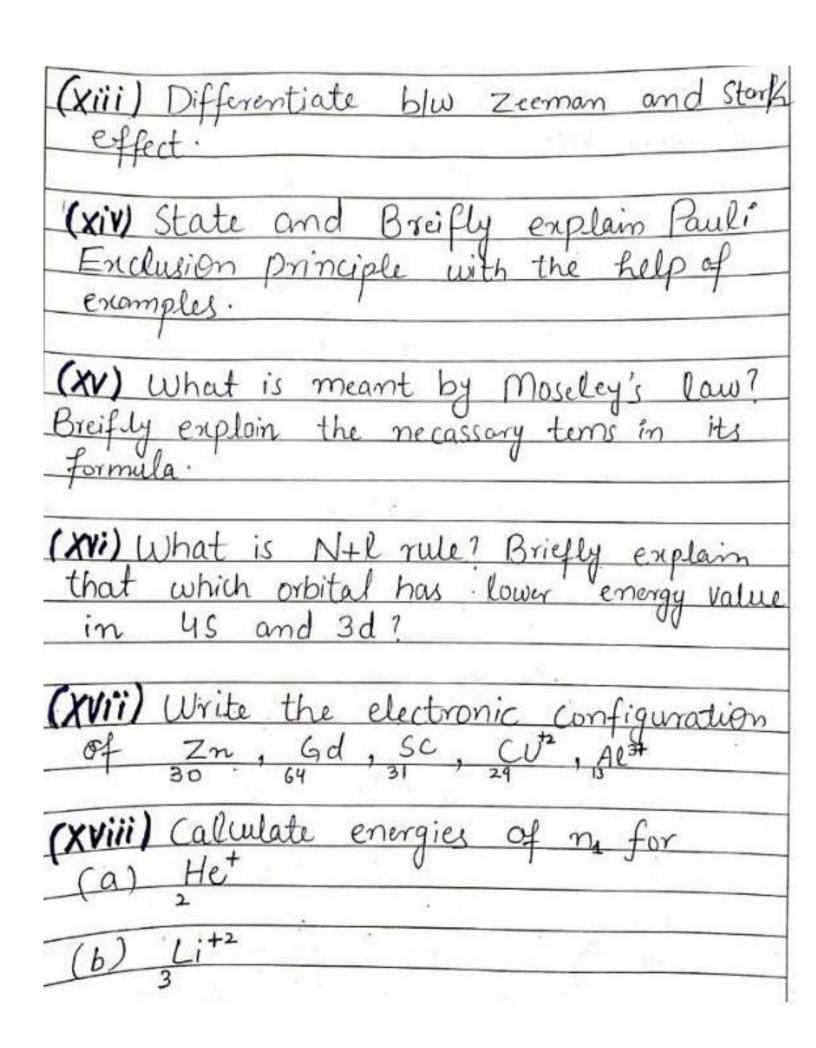
(c) n= 2, l=0, m=0

(d) n= 3, l=1, m=-1

	nit. Itraviolet region. nd state of hydrogen atom is
y does not apply	y?
(b) He ⁺ (d) Be	
(b) azimuth	tained from Schrodinger al quantum number, l antum number, s
· ·	nded that: Intained electrons
ne of the follow	ving has the highest
(c) 3p	(d) 2p
	nass approx equal to proton ame e/m as electron
oitals in d subsl (c) 7	hell are (d) 9
(b) H ⁺ (d) Be ⁺	
Aufbau princip	ole in electron
(b) Cu (d) K	
	rer have same und occurs in the underson in the ground rogen atom is 2. y does not apply (b) He+ (d) Be (b) azimuth (d) spin quanter condition (d) positive rate of the follow (c) 3p (b) a most electron (d) same of the follow (c) 3p (b) a most electron (d) same of the follow (c) 7 (b) H+ (d) Be+ Aufbau principation (b) Cu

(xvi) As we move away from nucleus the goes on:	e distance between the adjacent orbits
(a) increasing	(b) decreasing
(c) remains the same	(d) may increase or decrease
(xvii) The value of azimuthal quantum requals to 3 is:	number when the value of north is
(a) 0,1,3	(b) 1
(c) 0,1	(d) 0,1,2
For Examiner's use only:	Total Marks: 17 Marks Obtained:

Total Marks: 68


Note: Answer any eleven parts from Section 'B' and Attempt any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q.2 Attempt any Fourteen parts from the following. All parts carry equal marks.

(2) H	from e/m ratio and charge?
- lated	from e/m ratio and Charge?
(ii) Di-	fferentiate b/w Fast and Slow Neutron
(iii) U Heacte	that are X, Y and Z in the following
(a)	$N'' + n' \longrightarrow X'' + Y''$
(b)	$B'' + He' \longrightarrow Z'' + n'$
(iv) W	hat species are formed as a result
Chemis	decay of neutron? write necassary is
(v) Bo	of electron in the Hydrogen atom is = Eoh2 n2
(a) who	n the electron moves from n=1 to n=2
how	much does the radius change?

(b) What	is the d when it	istance to	ravelled b	by the $n=3?$
(vi) (alculation order to				
(Vii) Why Pressure The Catho	is it nec	assary to	decrease tube to	the get
(Viii) why	2772			2 2 7
(1x) Position				
(X) What which eff		111		3.550
(Xi) Desc (a) E (b) Fo	ribe the nergy ar	following and wa	g relation ngth lor welength/bo	ships:- the usis, of
the press				
get the	Cathode	rays?	15 7750	Y 2.5

xix) S	state o	and Bri	efly expl examples	ain Hun	d S
rule wi	th the	help of	examples		
Particle	S are	related	velength to the	mome	nti
000	ectron.	receive	0 00		
of ell	CLYOYI.				
of ele	BCLY071.				
of ele	BCLY071.	1 1/2		16	·j':
of ele	BCCY071.				Vi
of ele	SCLY071.	1 150	h h		Vir.
of ele	BCC YOY 1.		. /-		iji s
of ele	BCC YOY 1.		h. 1/2		iji:

SECTION – C (Marks 26)
Attempt any **Two** Questions from the following. All parts carry equal marks.

Calman	•
Que:	Derive an expression for total rgy of electron present in the nth
ene	rgy of electron present in the nth
orbi	t of H-atom.
(b) C	alculate the radius of first orbit of
Hyd	rogen atom and Helium ion (Het).
uh	ich me has smaller radius and why
Wi	100 One mas
(A) CAN	- Explain the origin of spectrum of
Huda	Explain the origin of spectrum of ogen atom on the basis of Bohr's
11901	ic model. Also explain in detail that
atorri	A are the different covier of constrat
wna	I are the different series of spectral spresent in the infrared region of
line	s present in the rigidal region of
	spectrum and how they are formed?
-1-fat	1 1 1 2 1 2
Q	what do you know about Quantum
num	what do you know about Quantum bers also explain that how they ous to understand atomic structus
bell	ous to understand atomic structus
- Fill	

Sheet	No:	 _	_

(b) Write three important	postulates of
(b) Write three important Plank's quantum theory help of necassary mathem	with the
help of necassary mathem	atical derivation
V	
BE	ST OF LUCK!
1 / Kill	1.31.3
And the second of the second o	
	E - D - T - T - T - T - T - T - T - T - T

