Chapter 01 (STOICHIOMETRY)

SECTION - A

Time a	llowed: 20 minut	tes		Marks: 17
Note:	should be com	pleted in the first	of this section are to be answered on the que 20 minutes and handed over to the Cer Do not use lead pencil.	
Q.1 E	Encircle the o	correct option	n i.e. A / B / C / D. All parts car	rry equal marks.
(i) Th	ne number of	f covalent bor	nds present in 8g CH4 are:	
	204×10^{24}		(b) 3.01×10^{23}	
(c) 6.0	022×10^{23}		(d) 6.022×10^{24}	
(ii) T	he number o	of H ⁺ ions pro	duced by complete ionization o	of 9.8 g H ₃ PO ₄
` /	$.022 \times 10^{22}$		(b) 1.204×10^{23}	
(c) 6	$.022 \times 10^{23}$		(d) 6.022×10^{23}	
	•	• •	n are needed for complete com	bustion of two
	s of methane	?	102	
` '	$.022 \times 10^{23}$		(b) $2 \times 6.022 \times 10^{23}$	
(c) 3	\times 6.022 \times 10 ²	23	(d) $4 \times 6.022 \times 10^{23}$	
		ole of each of the largest mas	the following is completely burss of CO ₂ ?	ent in oxygen.
(a) C	Carbon monox	kide	(b) Diamond	
(c) Et	chane		(d) Methane	
(v) W	hich of the f	following gase	es will occupy the highest volu	me at STP?
(a) 2	mole of H ₂		(b) 1.5 mole of O_2	
(c) on	ne mole of CO	O_2	(d) 0.5 mole of NH_3	
, ,			O ₂ enclosed in a container at S	
(a) 22	2 g	(b) 11 g	(c) 33 g	(d) 44 g

(vii) If the amount of a product obtained in the chemical reaction is 250 g

(c) 45%

(d) 50%

while its theoretical yield is 500 g. Its percentage yield will be:

(b) 35%

(a) 25%

(xvii) A flask contain	$100 \text{ cm}^3 \text{ of SO}$	O ₂ at STP. The fl	ask contains		
(a) 40 g	(b) 100 g				
(c) 50 g	(d) 1.427 g				
(xviii) Which one of by mass of nitrogen?	_	ompounds contain	ins the highest percentage		
(a) NH ₃	(b) N ₂ H ₄	(c) NO	(d) NH ₄ OH		
(ix) How many mole moles of butane?	s of oxygen are	needed for the c	omplete combustion of 2		
(a) 2	(b) 8	(c) 10	(d) 13		
(x) What is the mass (a) 254 g (c) 106 g	of one mole of	iodine molecules (b) 74 g (d) 127 g	?		
(xi) if 4 moles of SO ₂ molecules are requir		SO ₃ , how many	moles of oxygen		
(a) 0.5	(b) 1.0	(c) 1.5	(d) 2.0		
(xii) one mole of ethat (a) mass (c) number of electron		ole of ethane hav (b) number o (d) number o	f atoms		
(xiii) what is the mas	ss of aluminium	in 204 gram of	the aluminium oxide		
Al₂O₃ ? (a) 26g	(b) 27 g	(c) 54 g	(d) 108g		
(xiv) necklace has 6g (a) 6.022×10^{23} (c) 1.003×10^{23}	g of diamond in	8. What are the (b) 12.04 (d) 3.01 >	number of atoms in it it? $\times 10^{23}$ $\times 10^{23}$		
(xv) the reactant whi	ich is consumed	l earlier and give	es least quantity of		
(a) reactant in excess (c) limiting reactant	_	(b) Stoichio (d) Stoichio	ometry ometric amount		
(xvi) The relative ato of chlorine gas conta		lorine is 35.5. W	hat is the mass of 2 moles		
(a) 142 g		(b) 71 g			
(c) 35.5 g		(d) 18.75 g			

(xvii)) The	number	of V	Vater	mol	ecules	present	in	12 g	ofi	ice	is:
(A V II)	, 1110	Humber	OI A	v auci	11101	ccuics	present		14 2	, UL I		10.

(a) 6.022×10^{23} (c) 3.02×10^{23}

(b) 4.01×10^{23} (d) 1.04×10^{23}

For Examiner's use only:_

Total Marks:

Marks Obtained:

17

Note: Answer any eleven parts from Section 'B' and Attempt any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q.2 Attempt any Fourteen parts from the following. All parts carry equal marks.

(i) Wha	l is number	of Htions	in 109 0	& H3PO4?
iii) Cala	elate the m	ass in Kilog	Tams of 2	6×10
	ne limiting	reactant.	How it Co	m be
(iv) calc	ulate moles	of chlorine	atoms i	5 0.8229
(v) Dif	H.Clz. ferentiate b	etween lin	niting and	non-
-limiti (vi) Con	ng reactants	nism of 1	imiting re	cactent
is not	applicably this state	e to the	reversible	reaction
(vii) In	an industry	Copper of		as pre-
	by the for	ISOy (agy) -	> ZnSOuta	
	cusay whe			
	obtained.			
(Viii) The	actual yie	ld is lesse	thon	the
(ix) Dif	actual yie al yield: G ferentiation	between	actual	yield
and	theoretical	yield.	1	

(x) Suppose 1.87 moles of ammonium chloride
were reacted with 1.35 moves of calcium
hydronide. How many grams of Calcium
hydronide. How many grams of Calcium hydronide are left inseacted in this
Neution 1
Ca(OH)2+2NH4Cl-> Cacl2+2NH4OH
(xi) what will be the weight of oxygen
gas evolved when 5.09 of Keloz are
gas evolved when 5.0 g of kcl03 are completely decomposed thermally?
(Xii) How many covalent bonds are present
in 99 of H ₂ 0?
(xiii) How many moles of oxygen molecules
are there in 50.0 dm of oxygen gas at
STP? what volume does 0.8 moles of N=
(xiv) The liquid CHBr3 has a density of 2.89 gdm2
what volume of this liquid should be
measured to contain a total number of
4.8x 1024 molecules of CHBr3.
(XV) Glucose (C6H,O6) is the most important
nectesient in the cell for generating chemical
notesient in the cell for generating chemical potential energy. Calculate the mass percentage of Each element in glucose.
-centage of Each element in glucose.
U U

(XVi) A small piece of pure Al metal having a volume of 2.5 cm³ is reacted with excess of HCl. What is the weight of (XVII) How much Silver chloride will be formed by mining 120g of Silver nitrate with a Solution of 52g of Nacl.

(AgNO3 + Nacl -> Agcl + NaNos) Atomic masses: Ag = 107.8 amu, Cl=35.5 amu, N=14amy, 0=16amy (XVIII) How many molecules of water are there in 12g of ice? (Xix) Give reason that I make of different compounds have different masses the same number of molecules (XX) 20g of H, soy on dissolving in water ionizes completely. Calculates. a) Number of H. soy malecules (b) Number of H and Soy. (c) Mass of individual ion

SECTION – C (Marks 26)
Attempt any **Two** Questions from the following. All parts carry equal marks.

(1) - (0)	
Q:- who	it do you know about percentage
Composition	? How will you determine the
Percentage	it do you know about percentage ? How will you determine the of each element in the substance?
(b) The m	ain engines of the US space shuttle red by liquid hydrogen and liquid 1.02 × 105 kg of liquid hydrogen is on a Particular launch what mass
are powe	red by lighted hydrogen and lighted
oxygen. I	1.02 × 10 Kg of liquid budragen is
Carried	On a Particular launch what mass
of lique	d oxygen is necossary for all-11.
the hydri	on a particular launch, what mass id oxygen is necassary for all the ogen to burn. The equation for the is, $2H_{(g)} + O_{(g)} \rightarrow 2H_{2}O_{(g)}$
reaction	is 2H + O 240
	2(9) (9) 2120(9)
(2)Q(a) NH	exvation. How many moles of No.
of N an	the the as show here the start
ballanced)	Payation How many
Cond U	are received of Many moves of N.
of NH	in required to manufacture sog
- FRA	3
(b) 1/200	
FIOW	will you identify limiting reactant
ma	Chemical reaction? Calculate the
Volume	of NH3 gas produced at STP when
2009	lHyCl is heated with 2009 (a(OH)
according	2NH, Cl + Ca(OH), -> (aCl2+2NH3+2H2O
-	$2NH_{1}(l+Ca(OH)) \rightarrow (aCl_2+2NH_3+2H_2O$

130 2009 of K. Cr. Oz was reacted with
2009 conc. H. SO4. Calculate: (a) Mass of atomic oxygen produced.
(b) Mass of reactant left unreacted.
KCT2 O7 +4H2SO4 -> K2SO4 + CT2 (SO4)3 +4H2O+3(0)
(b) Solid Carbondioxide (dry ice) may be used for referigeration. Some of this Carbondioxide is obtained as a by-product when hydrogen is produced from methane in the following reaction:- CHy + 2H2O -> CO2 + 4H2
(a) What mass of CO. Should be obtained from the complete reaction of 1250g of methans?
(b) If the the actual yield obtained is 3000 g then what is the percentage yield
BEST OF LUCK!

Salon inte