

Q1. Differentiate between reversible and irreversible reactions.

Reversible reactions	Irreversible reactions
Definition	
1. The reactions in which the products	1. The reactions in which the products
can be changed/decomposed back to	cannot be converted/decomposed
the reactants are called reversible	back to the reactants are called
reactions.	irreversible reactions.
Completion	of reaction
2. These reactions never go to	2. These reactions are completed.
completion.	
Representation	n (arrow head)
3. The equation of these reactions is	3. The equations of these reactions are
represented by double headed arrow.	represented by single headed arrow.
Forward/reve	erse direction
4. These reactions occur in both	4. These reactions occur only in forward
directions.	direction.
Exam	nples
5. $2SO_2 + O_2 \rightleftharpoons 2SO_3$	5. $2Mg + O_2 \rightarrow 2MgO$
$N_2 + 3H_2 \rightleftharpoons 2NH_3$	$C + O_2 \longrightarrow CO_2$
<u> </u>	

Prepared by: Aisha Malik

Q2. Differentiate between forward and reverse reactions. **OR** Differentiate between the macroscopic characteristics of forward and reverse reaction.

Forward reaction	Reverse reaction	
Definition		
A reaction in which the products are	A reaction in which the products are	
produced from the reactants is called a	converted/decomposed back to the	
Forward reaction.	reactants is called a Reverse reaction.	
Direction of	f the reaction	
It is written from left to right.	It is written from right to left.	
Production	of substance	
Reactants produce products.	Products are changed back to the	
	reactants.	
Rate of	reaction	
The rate of reaction is fastest in the	The rate is zero in the beginning and	
beginning and gradually slows down.	gradually speeds up.	
Exar	mples	
2NO + 0	$_2 \rightleftharpoons 2NO_2$	
$2NO + O_2 \rightarrow 2NO_2$	$2NO_2 \rightarrow 2NO + O_2$	
S		

2

Soch badio by MAK

Q3. Why chemical equilibrium is also called Dynamic equilibrium?

Example: $3 H_2(g) + N_2(g) \leftrightarrows 2 NH_3$

Ans. <u>Chemical Equilibrium</u>: "A state of chemical reaction in which forward and reverse reactions take place at the same rate is called Chemical Equilibrium."

<u>Reason</u>: Chemical equilibrium is also known as Dynamic equilibrium because reactions do not stop when they come to equilibrium state. The individual molecules keep on reacting continuously. But there is not change in the actual amounts of reactants and products. This means concentration of reactants and products become constant at equilibrium stage.

Graph: [H₂] decreasing [N₂] decreasing [NH₃] increasing [NH₃] increasing

The dotted line shows the point when the concentrations of reactants and products do not change because the rates of the forward and reverse reactions are equal, and this is when the equilibrium is reached.

Prepared by: Aisha Malik

Q4. Why Kc is independent of initial concentration of reactants?

Ans. **Equilibrium constant (Kc):** Equilibrium constant is defined as the ratio of the product of concentration of products to the product of concentration of reactants at equilibrium.

<u>Reason</u>: The equilibrium constant (Kc) is independent of initial reactant concentrations because it represents the fixed ratio of product to reactant concentrations at equilibrium for a given reaction at a specific temperature. Regardless of the starting amounts of reactants, the system will adjust to maintain this ratio. Kc depends only on temperature and not on how much of each substance is initially present.

Example: $3 H_2(g) + N_2(g) \leftrightarrows 2 NH_3$

In this reaction, even if the concentration of the reactants (H₂ and N₂) is increased, it won't disturb the Kc because Kc doesn't depend upon the concentration of the products and reactants.

Soch badlo by MAK

Q5. Why kc depends upon temperature?

Ans. **Equilibrium constant (Kc):** Equilibrium constant is defined as the ratio of the product of concentration of products to the product of concentration of reactants at equilibrium.

<u>Reason</u>: Kc is dependent on temperature. Any change in temperature can alter the equilibrium constant because it affects the rates of forward and reverse reactions differently. However, at a fixed temperature, Kc remains constant irrespective of the initial concentrations of the reactants and products.

Example: $3 H_2(g) + N_2(g) \Leftrightarrow 2 NH_3$

In this example, if we increase the temperature of the reaction, the equilibrium constant will be different for it as compared to the equilibrium constant of the reaction at initial temperature. This is because the equilibrium constant is the ratio of the products and reactants at equilibrium that can be disturbed/influenced by the change in temperature.

Q6. How Kc can predict direction of chemical reaction?

Ans. Direction of reaction:

At any particular time, direction of reaction can be predicted by means of ratio of Kc.

Kc = [product]/[reactant] = Ratio

There are three possibilities:

- If the ratio < Kc then it is a forward reaction at any point.
- If the ratio > Kc then it is a reverse reaction.
- If the ratio = Kc then it is at equilibrium.

Prepared by: Aisha Malik

Soch badlo by MAK

Q7. How kc predicts extent of chemical reaction?

Ans. Prediction of extent of reaction:

Kc is very small:

Reaction doesn't not proceed appreciably in the forward direction. The reaction is at the beginning.

Kc is very large:

Reaction is completed in the forward direction and it will now move in backward direction. Reaction is half completed or near to completion.

Kc is neither very large nor very small:

Kc is close to 1. Thus, the reaction is at equilibrium / near to equilibrium and it contain appreciable amount of reactant and product.

Q8. At equilibrium a mixture of N_2 , H_2 , and NH_3 gas at 500°C is determined to consists of 0.602 mol/dm³ of N_2 , 0.420 mol/dm³ of H_2 , and 0.113 mol/dm³ of NH_3 . What is the equilibrium constant for the reaction at this temperature?

 $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_3$

Ans. Given:

 $[N_2] = 0.602 \text{ mol/dm}^3$

 $[H_2] = 0.420 \text{ mol/dm}^3$

[NH₃] = 0.113 mol/dm₃

Required:

Kc=?

Formula:

Kc= [product]/[reactant]

Solution:

Applying the above formula,

 $Kc = [NH_3]^2 / [N_2][H_2]^3$

 $Kc = [0.113]^2 / [0.602] [0.420]^3$

Kc = 0.286

Result:

So, the value of the equilibrium constant is 0.286

Prepared by: Aisha Malik